
AsciiDoc Writer’s Guide

ii

Table of Contents

 .. vii
1. Writing in AsciiDoc .. 1

1.1. “It’s just text, mate.” .. 1
1.2. Content is king! ... 1
1.3. Admonitions ... 3
1.4. Mild punctuation, strong impact .. 3

1.4.1. Quoted text ... 3
1.4.2. Preventing substitution .. 5
1.4.3. Replacements ... 6

1.5. Lists, lists, lists .. 7
1.5.1. Lists of things .. 7
1.5.2. Ordering the things ... 9
1.5.3. Titling a list .. 11
1.5.4. Labeled lists .. 11
1.5.5. Hybrid lists .. 13
1.5.6. Complex list content ... 15
1.5.7. Dividing lists .. 17

1.6. Links and images .. 17
1.6.1. External links ... 17
1.6.2. Target window and role attributes for links 18
1.6.3. Links to relative files ... 19
1.6.4. Internal cross references .. 19
1.6.5. Images .. 19

1.7. Titles, titles, titles ... 21
1.7.1. Document title ... 21
1.7.2. Document attributes .. 23
1.7.3. Section titles .. 24
1.7.4. Block titles ... 27

2. Building blocks in AsciiDoc ... 28
2.1. Delimited blocks .. 28
2.2. Block metadata ... 30
2.3. Masquerading blocks .. 31

2.3.1. Admonition blocks ... 31
2.3.2. Listing and source code blocks ... 32
2.3.3. Open blocks .. 33
2.3.4. Passthrough blocks ... 34

AsciiDoc Writer’s Guide

iii

2.4. Delimiters optional ... 34
2.5. A new perspective on tables ... 35

3. What else can AsciiDoc do? ... 40
4. Rendering your document ... 41

4.1. Installing AsciiDoc ... 41
4.1.1. Installing AsciiDoc via a package manager 41
4.1.2. Installing AsciiDoc manually ... 42

4.2. Converting a document to HTML 5 ... 43
4.3. Converting a document to DocBook ... 46
4.4. Converting the document to PDF ... 47
4.5. Producing HTML-based presentations .. 47
4.6. Output galore .. 48
4.7. Where else is AsciiDoc rendered? .. 48

5. Wrap-up ... 49
Glossary ... 50

iv

List of Figures

1.1. A mountain sunset ... 20

v

List of Tables

1.1. Ordered list numbering scheme by level .. 10

vi

List of Examples

1.1. A nested ordered list .. 10
1.2. A basic labeled list ... 12
1.3. A hybrid list .. 14
1.4. A list with complex content .. 16
1.5. A hyperlinked image with caption .. 20
2.1. Source code with callouts .. 33

vii

This guide provides a gentle introduction to AsciiDoc1 , a plain text documentation
syntax and processor. This introduction is intended for anyone who wants to reduce
the effort required to write and publish content, whether for technical documentation,
articles, web pages or good ol'-fashioned prose.

If you want to know what AsciiDoc is all about, find the answer in
What is AsciiDoc?2

If you’re looking for a concise survey of the AsciiDoc syntax, consult
the AsciiDoc Syntax Quick Reference3 .

In this guide, you’ll learn:

• The basic structure of an AsciiDoc document

• How to create your first AsciiDoc document

• How to add other structural elements such as lists, block quotes and source code

• How to render an AsciiDoc document to HTML, DocBook and PDF

In addition to covering the AsciiDoc basics, this guide also suggests a set of
conventions to help you create more consistent documents and maximize your writing
productivity.

Let’s dive in to AsciiDoc!

1 http://asciidoc.org
2 http://asciidoctor.org/docs/what-is-asciidoc-why-use-it
3 http://asciidoctor.org/docs/asciidoc-syntax-quick-reference/

http://asciidoc.org
http://asciidoctor.org/docs/what-is-asciidoc-why-use-it
http://asciidoctor.org/docs/asciidoc-syntax-quick-reference/
http://asciidoc.org
http://asciidoctor.org/docs/what-is-asciidoc-why-use-it
http://asciidoctor.org/docs/asciidoc-syntax-quick-reference/

1

Chapter 1. Writing in AsciiDoc

The goal of this section is to teach you how to compose your first AsciiDoc document.
Hopefully, when you look back, you’ll agree it just makes sense.

Your adventure with AsciiDoc begins in your favorite text editor.

1.1. “It’s just text, mate.”

Since AsciiDoc syntax is just plain text , you can write an AsciiDoc document using
any text editor. You don’t need complex word processing programs like Microsoft Word,
OpenOffice Writer or Google Docs. In fact, you shouldn’t use these programs because
they add cruft to your document (that you can’t see) and makes conversion tedious.

While it’s true any text editor will do, I recommend selecting an editor
that supports syntax highlighting for AsciiDoc. The color brings
contrast to the text, making it easier to read. The highlighting also
confirms when you’ve entered the correct syntax for an inline or block
element.

The most popular application for editing plain text on Mac OS X is TextMate. A similar
choice on Linux is GEdit. On Windows, stay away from Notepad and Wordpad because
they produce plain text which is not cross-platform friendly. Opt instead for a competent
text editor like Notepad++. If you’re a programmer (or a writer with an inner geek), you’ll
likely prefer Vim, Emacs, or Sublime Text, all of which are available cross-platform.
The key feature all these editors share is syntax highlighting for AsciiDoc1 .

Previewing the output of the document while editing can be helpful.
To learn how to setup instant preview, check out the Editing AsciiDoc
with Live Preview2 tutorial.

Open up your favorite text editor and get ready to write some AsciiDoc!

1.2. Content is king!

The bulk of the content in an AsciiDoc document is paragraph text. In fact, all it takes
to create a document in AsciiDoc is a single sentence. No special markup is required
to write a normal paragraph. Just type away!

1 http://asciidoc.org/#_editor_support
2 http://asciidoctor.org/docs/editing-asciidoc-with-live-preview/

http://asciidoc.org/#_editor_support
http://asciidoctor.org/docs/editing-asciidoc-with-live-preview/
http://asciidoctor.org/docs/editing-asciidoc-with-live-preview/
http://asciidoc.org/#_editor_support
http://asciidoctor.org/docs/editing-asciidoc-with-live-preview/

Writing in AsciiDoc

2

In AsciiDoc, the main structural element is the paragraph.

A paragraph consists of adjacent lines of text.

To start a new paragraph, leave a blank line by hitting

Enter twice, then just keep on typing.

Just like that, you’re writing in AsciiDoc! As you can see, it’s just like writing an e-mail.

Save the file with a file extension of .ad or .adoc .

Although the file extension doesn’t matter to the AsciiDoc processor,
it’s used in other contexts (such as by your editor or GitHub) to
indicate the format of the document.

If you want to find out how to render the document to HTML,
DocBook or PDF, skip ahead to the section on Chapter 4, Rendering
your document.

Wrapped text and hard line breaks

Adjacent lines like these are combined as a single paragraph.

That means you can wrap paragraph text

or put each sentence on a separate line

and the line breaks won't appear in the output.

Here’s how the previous lines look when rendered:

Adjacent lines like these are combined as a single paragraph. That
means you can wrap paragraph text or put each sentence on a
separate line and the line breaks won’t appear in the output.

If you want line breaks in a paragraph to be preserved, simply add a space
followed by a plus sign at the end of the sentence:

Roses are red, +

Violets are blue.

Alternatively, if you’re using Asciidoctor and you want line breaks in a paragraph
to be preserved, add the following attribute entry to the header of your document
below the title, author and revision lines:

Writing in AsciiDoc

3

:hardbreaks:

This feature is only available in Asciidoctor.

1.3. Admonitions

There are certain statements that you might want to draw attention to by taking them out
of the flow and labeling them with a priority. These are called admonition paragraphs. To
make a paragraph an admonition, prefix it with an uppercase label, such as in this note:

NOTE: Admonition paragraphs call attention to special words of advice.

The following labels are recognized:

• NOTE

• TIP

• WARNING

• CAUTION

• IMPORTANT

An admonition paragraph is rendered in a callout box with the admonition label—or its
corresponding icon—in the gutter. Icons are enabled by setting the icons attribute
on the document.

Admonitions can also encapsulate any block content, which we’ll
cover later.

All words and no emphasis makes the document monotonous. Let’s give our
paragraphs some emotion.

1.4. Mild punctuation, strong impact

Just as we emphasize certain words and phrases when we speak, we can emphasize
them in text by surrounding them with punctuation. AsciiDoc refers to this markup as
quoted text.

1.4.1. Quoted text

For instance, in an e-mail, you might “speak” a word louder by enclosing it in asterisks.

Writing in AsciiDoc

4

I can't believe it, we *won*!

As you would expect, the asterisks make the text won bold. You can almost sense the
emotion. This is one example of quoted (i.e., formatted) text.

The term “quote” is used liberally here to apply to any symbols that
surround text in order to apply emphasis or special meaning.

Here are the forms of quoted text that AsciiDoc recognizes:

Bold
One asterisk (*) on either side of a word or phrase makes it bold.

'Italic'
Single quotes around a word or phrase makes it italic.

Italic
One underscore (_) on either side of a word or phrase also makes it italic.

Bold italic
Bold markup around a word or phrase in italic makes it bold italic. Reversing the
order of the markup won’t produce the same result.

+Monospace+

One plus (+) on either side of a word or phrase makes it monospaced (i.e., constant
width).

+*Monospace bold*+

Monospace markup around a word or phrase in bold makes it monospace bold.

+_Monospace italic_+

Monospace markup around a word or phrase in italic makes it monospace italic.
Reversing the order of the markup won’t produce the same result.

#Open style#
One hash (#) on either side of a word or phrase makes it possible to assign it a
role (i.e., CSS class).

^Superscript^

One caret (^) on either side of a word or phrase makes it superscript.

~Subscript~
One tilde (~) on either side of a word or phrase makes it subscript.

Single `smart quotes'
One leading backtick (`) and one trailing single quote (') around a word or phrase
encloses it in single ‘smart quotes’.

Writing in AsciiDoc

5

Double ``smart quotes''
Two leading backticks (``) and two trailing single quotes ('') around a word or
phrase encloses it in double “smart quotes”.

When you want to quote text (e.g., place emphasis) somewhere other than at the
boundaries of a word, you need to double up the punctuation. For instance, to emphasis
the first letter of a word, you need to surround it in double asterisks:

Four score and seven years ago...

The double punctuation applies for all types of quoted text except
smart quotes, subscript and superscript.

Any quoted text can be prefixed with an attribute list. The first positional attribute is
treated as a role. The role can be used to apply custom styling to the text. For instance:

Type the word [userinput]#asciidoc# into the search bar.

When rendering to HTML, the word “asciidoc” is wrapped in tags and the role
is used as the element’s CSS class:

asciidoc

You can apply styles to the text using CSS.

You may not always want these substitutions to take place. In those cases, you’ll need
to use markup to escape the text.

1.4.2. Preventing substitution

If you are getting quoted text behavior where you don’t want it, there are several
approaches you can use to prevent it.

Backslash escaping
To prevent punctuation from being interpreted, proceed it with a backslash:

Stars will not be bold, but rather appear as *Stars*.

The backslash character is automatically removed.

Writing in AsciiDoc

6

Double dollar enclosure
To exclude a phrase from substitutions, enclose it in double dollars ($$):

$$*Stars*$$ will not be bold, but rather appear as *Stars*.

Special characters are still escaped so, $$<p>$$ appears as <p>.

Double dollar is commonly used to wrap URLs containing punctuation.

Triple plus enclosure & inline pass macro
To exclude a phrase from substitutions and disable escaping of special characters,
enclose it in triple pluses (+++) or the inline pass:[] macro:

The markup +++<u>underline me</u>+++ renders as underlined text.

The markup pass:[<u>underline me</u>] produces the same result.

Triple plus and pass:[] are often used to output custom HTML or XML.

Backticks enclosure
To exclude a phrase from substitutions, disable escaping of special characters and
render it as monospaced text, enclose it in backticks (`):

This `*literal*` will appear as *literal* in a monospace font.

Backticks are commonly used around inline code containing markup.

1.4.3. Replacements

AsciiDoc also recognizes textual representations of symbols, arrows and dashes:

Name AsciiDoc Source As Rendered

copyright (C) ©

registered trademark (R) ®

trademark (TM) ™

em dash (between words) -- —

ellipses ... …

arrows -> =>
<- <=

→ ⇒
← ⇐

apostrophe Sam's Sam’s

XML entity (e.g., dagger) † †

This mild punctuation does not take away from the readability of the text. In fact, you
could argue that it makes the text easier to read. What’s important is that these are
conventions with which you are likely already familiar.

Writing in AsciiDoc

7

Punctuation is used in AsciiDoc to create another very common type of element in
documents, lists!

1.5. Lists, lists, lists

There are three types of lists supported in AsciiDoc:

1. Unordered

2. Ordered

3. Labeled

Unordered and ordered lists are structurally very similar. You can think of them as
outline lists that use different types of markers (i.e., bullets). In contrast, labeled lists
—also called variable or term-definition lists—are a collection of labels that each have
supporting content and they are rarely nested.

Let’s explore each type of list, then mix them together. We’ll also look at how to put
complex content inside a list item.

1.5.1. Lists of things

If you were to create a list of items in an e-mail, how would you do it? Chances are,
what you’d type is exactly how you define an outline list in AsciiDoc.

Here’s an example of a grocery list written as an unordered list in AsciiDoc:

* Milk

* Eggs

* Bread

* Bananas

Was your instinct to use a hyphen instead of an asterisk? Guess what? That works too:

- Milk

- Eggs

- Bread

- Bananas

In either case, you don’t need to see the output. You already know how it will look ;)

You are free to indent the list however it suits you.

Writing in AsciiDoc

8

The item’s first line of text must be offset from the marker by at least
one space.

What if you wanted to group the grocery list by aisle? Then you might organize it as
a nested list.

To get a nested item, just add another asterisk in front of the item:

* Diary

** Milk

** Eggs

* Bakery

** Bread

* Produce

** Bananas

You can have up to five levels of nesting:

* Kingdom

** Phylum

*** Class

**** Order

***** Family

The hyphen doesn’t work for nested lists since repeating hyphens are used for other
purposes in AsciiDoc.

Since a hyphen only works for a single level nesting in an AsciiDoc
list, I recommend reserving the hyphen for lists that only have a
single level:

List without nested items

- Fedora

- Ubuntu

- Slackware

For lists that have more than one level, use asterisks:

List with nested items

* Linux

Writing in AsciiDoc

9

** Fedora

** Ubuntu

** Slackware

* BSD

** FreeBSD

** NetBSD

While it would seem as though the number of asterisks represents
the nesting level, that’s not how depth is determined. A new level
is created for each unique marker encountered. However, it’s much
more intuitive to follow this convention:

of asterisks = level of nesting

After all, we are shooting for plain text markup that is readable as is.

Using a different marker, we can create an ordered list in the same way.

1.5.2. Ordering the things

Sometimes, we need to number the items in a list. Instinct might tell you to prefix each
item with a number, like in this next list:

1. Protons

2. Electrons

3. Neutrons

Since the numbering is obvious, the AsciiDoc processor will insert the numbers for you
if you omit them:

. Protons

. Electrons

. Neutrons

Like with unordered lists, you create a nested item by using one or more dots in front
of each the item:

. Lists

.. Outline

... Unordered

... Ordered

.. Labeled

Writing in AsciiDoc

10

. Titles

.. Document

.. Section

.. Block

Like with the asterisks in an unordered list, the number of dots in an
ordered list doesn’t represent the nesting level. However, it’s much
more intuitive to follow this convention:

of dots = level of nesting

Again, we are shooting for plain text markup that is readable as is.

AsciiDoc selects a different number scheme for each level of nesting. Here’s how the
previous list renders:

Example 1.1. A nested ordered list

1. Lists

a. Outline

i. Unordered

ii. Ordered

b. Labeled

2. Titles

a. Document

b. Section

c. Block

The following table shows the number scheme used by default for each nesting level:

Table 1.1. Ordered list numbering scheme by level

Level Numbering
Scheme

Examples CSS class (HTML
backend)

1 Arabic 1. 2. 3. arabic

2 Lower Alpha a. b. c. loweralpha

3 Lower Roman i. ii. iii. lowerroman

Writing in AsciiDoc

11

Level Numbering
Scheme

Examples CSS class (HTML
backend)

4 Upper Alpha A. B. C. upperalpha

5 Upper Roman I. II. III. upperroman

You can override the number scheme for any level by setting its style (the first positional
entry in a block attribute list). You can also set the starting number using the start
attribute:

["lowerroman", start=5]

. Five

. Six

[loweralpha]

.. a

.. b

.. c

. Seven

1.5.3. Titling a list

You can give any block element, such as a list, a title by prefixing the line with a dot
immediately followed by the text (without leaving any space after the dot).

Here are examples of two lists with titles:

.Shopping list

* Milk

* Eggs

* Bread

.Parts of an atom

. Protons

. Electrons

. Neutrons

Not all lists have punctuation markers. Let’s look at lists that use terms to tag each item.

1.5.4. Labeled lists

Labeled lists are useful when you need to include a description or supporting text for
each item in a list. Each item in a labeled list consists of a term or phrase followed by:

Writing in AsciiDoc

12

• a separator (typically a double colon, ::)

• at least one space or endline

• the item’s content

Here’s an example of a labeled list that identifies parts of a computer:

CPU:: The brain of the computer.

Hard drive:: Permanent storage for operating system and/or user files.

RAM:: Temporarily stores information the CPU uses during operation.

Keyboard:: Used to enter text or control items on the screen.

Mouse:: Used to point to and select items on your computer screen.

Monitor:: Displays information in visual form using text and graphics.

By default, the content of each item is displayed below the label when rendered. Here’s
a preview of how this list is rendered:

Example 1.2. A basic labeled list

CPU
The brain of the computer.

Hard drive
Permanent storage for operating system and/or user files.

RAM
Temporarily stores information the CPU uses during operation.

Keyboard
Used to enter text or control items on the screen.

Mouse
Used to point to and select items on your computer screen.

Monitor
Displays information in visual form using text and graphics.

If you want the label and content to appear on the same line, add the horizontal style
to the list.

[horizontal]

CPU:: The brain of the computer.

Hard drive:: Permanent storage for operating system and/or user files.

RAM:: Temporarily stores information the CPU uses during operation.

Writing in AsciiDoc

13

The content of a labeled list can be any AsciiDoc element. For instance, we could
rewrite the grocery list from above so that each aisle is a label rather than a parent
outline list item.

Diary::

* Milk

* Eggs

Bakery::

* Bread

Produce::

* Bananas

Labeled lists are quite lenient about whitespace, so you can spread the items out and
even indent the content if that makes it more readable for you:

Diary::

 * Milk

 * Eggs

Bakery::

 * Bread

Produce::

 * Bananas

1.5.5. Hybrid lists

You can mix and match the three list types within a single hybrid list. AsciiDoc works
hard to infer the relationships between the items that are most intuitive to us humans.

Here’s an example of nesting an unordered list inside of an ordered list:

. Linux

* Fedora

* Ubuntu

* Slackware

. BSD

* FreeBSD

* NetBSD

Writing in AsciiDoc

14

Again, you can spread the items out and indent the nested lists if that makes it more
readable for you:

. Linux

 * Fedora

 * Ubuntu

 * Slackware

. BSD

 * FreeBSD

 * NetBSD

Here’s a list that mixes all three types of lists:

Operating Systems::

 . Linux

 * Fedora

 * Ubuntu

 * Slackware

 . BSD

 * FreeBSD

 * NetBSD

Cloud Providers::

 . PaaS

 * OpenShift

 * CloudBees

 . IaaS

 * Amazon EC2

 * Rackspace

Here’s how the list is rendered:

Example 1.3. A hybrid list

Operating Systems

1. Linux

• Fedora

• Ubuntu

• Slackware

Writing in AsciiDoc

15

2. BSD

• FreeBSD

• NetBSD

Cloud Providers

1. PaaS

• OpenShift

• CloudBees

2. IaaS

• Amazon EC2

• Rackspace

You can include more complex content in a list item as well.

1.5.6. Complex list content

Aside from nested lists, all of the list items you’ve seen only have one line of text. A
list item can hold any type of AsciiDoc content, including paragraphs, listing blocks and
even tables. You just need to “attach” them to the list item.

Like with regular paragraph text, the text in a list item can wrap across any number of
lines, as long as all the lines are adjacent. The wrapped lines can be indented and they
will still be treated as normal paragraph text. For example:

* The header in AsciiDoc is optional, but if

it is used it must start with a document title.

* Optional Author and Revision information

immediately follows the header title.

* The document header must be separated from

 the remainder of the document by one or more

 blank lines and cannot contain blank lines.

When items contain more than one line of text, leave a blank line
before the next item to make the list easier to read.

Writing in AsciiDoc

16

If you want to attach additional paragraphs to a list item, you “add” them together using
a list continuation. A list continuation is a + symbol on a line by itself, immediately
adjacent to the two blocks it’s connecting. Here’s an example:

* The header in AsciiDoc must start with a

 document title.

+

The header is optional.

* Optional Author and Revision information

 immediately follows the header title.

Using the list continuation, you can attach any type of block element and you can use
the list continuation any number of times in a single list item.

Here’s an example that attaches both a listing block and an admonition paragraph to
the first item:

* The header in AsciiDoc must start with a

 document title.

+

= Document Title

+

NOTE: The header is optional.

* Optional Author and Revision information

 immediately follows the header title.

+

= Document Title

Doc Writer <doc.writer@asciidoc.org>

v1.0, 2013-01-01

Here’s how the source is rendered:

Example 1.4. A list with complex content

• The header in AsciiDoc must start with a document title.

Writing in AsciiDoc

17

= Document Title

The header is optional.

• Optional Author and Revision information immediately follows the header title.

= Document Title

Doc Writer <doc.writer@asciidoc.org>

v1.0, 2013-01-01

1.5.7. Dividing lists

If you have adjacent lists, they have the tendency to want to fuse together. To force the
lists apart, place a line comment between them, offset on either side by a blank line
(i.e., an end of list marker). Here’s an example:

* Apples

* Oranges

* Bananas

//^

* Walnuts

* Almonds

* Cashews

1.6. Links and images

AsciiDoc makes it easy to include links, images and other types of media in a document.

1.6.1. External links

There’s nothing you have to do to make a link to a URL. Just include the URL in the
document and AsciiDoc will turn it into a link.

You can learn more about AsciiDoc at http://asciidoc.org.

The trailing period will not get caught up in the link. AsciiDoc is smart like that.

Writing in AsciiDoc

18

AsciiDoc recognizes URLs that begin with http:// , https:// ,
ftp:// , and irc:// .

To turn a word or phrase into a link, just enclose it in square brackets at the end of
the URL:

http://asciidoc.org[AsciiDoc] is a lightweight markup language.

1.6.2. Target window and role attributes for links

You often need to set the target attribute on a link element (<a>) so the link opens in
a new window (e.g.,).

This type of configuration is normally specified using attributes. However, AsciiDoc
does not parse attributes in the link macro by default. In Asciidoctor 0.1.3, you can
enable parsing of link macro attributes by setting the linkattrs document attribute
in the header.

:linkattrs:

You can also specify the name of the target window using the window attribute:

http://google.com[Google, window="_blank"]

Asciidoctor incluedes shorthand for _blank , since it is the most common window
name. Just end the link text with a caret (^):

http://google.com[Google^]

Since Asciidoctor is parsing the attributes, that opens the door for adding a role (i.e.,
CSS class) to the link:

http://google.com[Google^, role="external"]

You can now have fun styling your links.

Writing in AsciiDoc

19

1.6.3. Links to relative files

If you want to link to a file relative to the current document, use the link: prefix in
front of the file name:

link:editing-asciidoc-with-live-preview[Editing with Live Preview]

To link directly to a section in the document (a “deep” link), append a hash (#) followed
by the id of the section to the end of the file name:

link:editing-asciidoc-with-live-preview/#livereload[LiveReload]

You can also create links that refer to sections within the current document.

1.6.4. Internal cross references

A link to another location in the current document is called a cross reference. You create
a cross reference by enclosing the element’s id in double angled brackets:

The section <<content-is-king>> covers paragraphs in AsciiDoc.

In some backends, the text of the link will be automatically generated from the title of
the element, if one exists. If you want to customize the linked text, include it after the
id, separated by a comma:

Learn how to create <<content-is-king,paragraphs>> in AsciiDoc.

Image references are similar to links since they are also references to URLs or files.
The difference, of course, is that they display the image in the document.

1.6.5. Images

To include an image on it’s own line (i.e., a block image), use the image:: prefix in
front of the file name and square brackets after it:

image::sunset.jpg[]

If you want to specify alt text, include it inside the square brackets:

Writing in AsciiDoc

20

image::sunset.jpg[Sunset]

You can also give the image an id, a title (i.e., caption), set its dimensions (i.e., width
and height) and make it a link:

[[img-sunset]]

.A mountain sunset

image::sunset.jpg[Sunset, 300, 200, link="http://www.flickr.com/photos/

javh/5448336655"]

The title of a block image is displayed underneath the image when rendered. Here’s
a preview:

Example 1.5. A hyperlinked image with caption

Figure 1.1. A mountain sunset

Images are resolved relative to the value of the imagesdir

document attribute, which defaults to an empty value. The
imagesdir attribute can be an absolute path, relative path or
base URL. If the image target is a URL or an absolute path, the
imagesdir prefix is not added.

You should use the imagesdir attribute to avoid hard coding the
shared path to your images in every image macro.

Writing in AsciiDoc

21

If you want to include an image inline, use the image: prefix instead (notice there
is only one colon):

Press the image:save.png[Save, title="Save"] button.

For inline images, the optional title is displayed as a tooltip.

You can also include other types of media, such as audio and video. Consult the Audio
and video block macros3 section of the AsciiDoc User Guide for details.

If paragraphs and lists are the meat of the document, then titles and sections are its
bones. Let’s explore how to give structure to our document.

1.7. Titles, titles, titles

AsciiDoc supports three types of titles:

1. Document title

2. Section title

3. Block title

All titles are optional in AsciiDoc. This section will define each title type and explain
how and when to use them.

1.7.1. Document title

Just as every e-mail has a subject, every document (typically) has a title. The title goes
at the top of an AsciiDoc document.

A document title is an optional feature of an AsciiDoc document.

To create a document title, begin the first line of the document with one equal sign
followed by at least one space (=), then the text of the title. This syntax is the simplest
(and thus recommended) way to declare a document title.

Here’s an example of a document title followed by an abbreviated paragraph:

= Lightweight Markup Languages

3 http://asciidoc.org/userguide.html#X98

http://asciidoc.org/userguide.html#X98
http://asciidoc.org/userguide.html#X98
http://asciidoc.org/userguide.html#X98

Writing in AsciiDoc

22

According to Wikipedia...

The document title is part of the document header. So what else can go in the header?
Good question.

The document header

Notice the blank line between the title line and the first line of content in the previous
example. This blank line separates the document header from the document body (in
this case a paragraph). The document title is part of the document header. In all, the
document header contains the title, author, revision information and document-wide
attributes.

If the title line is not offset by a blank line, it gets interpreted as a
section title, which we’ll discuss later.

Your document now has a title, but what about an author? Just as every e-mail has a
sender, every document must surely have an author. Let’s see how to add additional
information to the header, including an author.

There are two optional lines of text you can add immediately below the document title
for defining common document attributes:

Line 1
Author name and an optional e-mail address

Line 2
An optional revision, a date and an option remark

Let’s add these lines to our document:

= Lightweight Markup Languages

Doc Writer <doc.writer@asciidoc.org>

v1.0, 2012-01-01

According to Wikipedia...

The header now contains a document title, an author, a revision number and a date.
This information will be formatted when the document is rendered.

The header, including the document title, is not required. If absent,
the AsciiDoc processor will happily render whatever content is

Writing in AsciiDoc

23

present. The header is only used when rendering a full document.
It’s excluded from the output of an embedded document.

The document header can also be used to define attributes.

1.7.2. Document attributes

Attributes are one of the features that sets AsciiDoc apart from other lightweight markup
languages. You can use attributes to toggle features or to store reusable or replacement
content.

Most often, attributes are defined in the document header. There are scenarios where
they can be defined inline, but we’ll focus on the more common usage.

An attribute entry consists of a name surrounded by colons at the beginning of the line
followed by at least one space, then the content. The content is optional.

Here’s an example of an attribute that holds the version of an application:

= User Guide

Doc Writer <doc.writer@asciidoc.org>

2012-01-01

:appversion: 1.0.0

There should be no blank lines between the first attribute entry and
the rest of the header.

Now you can refer to this attribute anywhere in the document (where attribute
substitution is performed) by surrounding the name in curly braces:

The current version of the application is {appversion}.

Attributes are also commonly used to store URLs, which can get quite lengthy. Here’s
an example:

:fedpkg: https://apps.fedoraproject.org/packages/asciidoc

Here’s the attribute in use:

Information about the AsciiDoc package in Fedora is found at {fedpkg}.

Writing in AsciiDoc

24

Document attributes can also be used to toggle settings or set configuration variables
that control the output generated by the AsciiDoc processor.

For example, to include a table of contents on the left side the document, you can define
the toc2 attribute:

:toc2:

To undefine an attribute, place a ! at the end of the name:

:linkcss!:

You can also set the base path to images (default: empty), icons (default: ./images/
icons), stylesheets (default: ./stylesheets) and JavaScript files (default: ./
javascripts):

:imagesdir: ./images

:iconsdir: ./icons

:stylesdir: ./styles

:scriptsdir: ./js

For a complete list of which attributes can be assigned to control the output, consult
the Backend Attributes4 chapter of the AsciiDoc User Guide. To see which intrinsic
attributes are available, consult the Intrinsic Attributes5 chapter.

Attribute values can also be set and overridden when invoking the
AsciiDoc processor. We’ll explore that feature later.

When you find yourself typing the same text repeatedly, or text that often needs to be
updated, consider assigning it to a document attribute and use that instead.

As your document grows, you’ll want to break the content into sections, like in this
guide. That’s accomplished using section titles.

1.7.3. Section titles

Sections partition the document into a content hierarchy. In AsciiDoc, sections are
defined using section titles.

4 http://asciidoc.org/userguide.html#X88
5 http://asciidoc.org/userguide.html#X60

http://asciidoc.org/userguide.html#X88
http://asciidoc.org/userguide.html#X60
http://asciidoc.org/userguide.html#X88
http://asciidoc.org/userguide.html#X60

Writing in AsciiDoc

25

A section title uses the same syntax as a document title, except the line may begin with
two to six equal signs instead of just a single equal sign. The number of equal signs
represents the nesting level (using a 0-based index).

Here are all the section levels permitted in an AsciiDoc document (for an article doctype,
the default), shown below the document title:

= Document Title (Level 0)

== Level 1 Section

=== Level 2 Section

==== Level 3 Section

===== Level 4 Section

====== Level 5 Section

== Another Level 1 Section

When the document is rendered as HTML 5 (using the built-in
html5 backend), each section title becomes a heading element
where the heading level matches the number of equal signs. For
example, a level 1 section (2 equal signs) maps to an <h2> element.

Section levels cannot be chosen arbitrarily. There are two rules you must follow:

1. A document can only have multiple level 0 sections if the doctype is set to
book .6

2. Section levels cannot be skipped when nesting sections

For example, the following syntax is illegal:

= Document Title

= Illegal Level 0 Section (violates rule #1)

== First Section

6The default doctype is article , which only allows one level 0 section (i.e., the document title).

Writing in AsciiDoc

26

==== Illegal Nested Section (violates rule #2)

Content above the first section (after the document title) is part of the preamble. Once
the first section is reached, content is associated with the section that proceeds it:

== First Section

Content of first section

=== Nested Section

Content of nested section

== Second Section

Content of second section

In addition to the equals marker used for defining single-line section
titles, Asciidoctor recognizes the hash symbol (#) from Markdown.
That means the outline of a Markdown document will render just fine
as an AsciiDoc document.

To have the processor auto-number the sections, define the numbered attribute in
the document header:

:numbered:

You can also use this attribute entry above any section title in the document to toggle the
auto-numbering setting. When you want to turn off the numbering, add an exclamation
point to the end of the attribute name:

:numbered!:

== Unnumbered Section

Preamble

Content between the document title and the first section is called the preamble. If a
document title is not present, this content is not wrapped in a preamble section.

= Document Title

Writing in AsciiDoc

27

preamble

another preamble paragraph

== First Section

When using the default Asciidoctor stylesheet, this preamble is
rendered in the style of a lead (i.e., larger font).

You can also assign titles to individual elements.

1.7.4. Block titles

You can assign a title to any paragraph, list or delimited block element. The title is used
as the element’s caption. In most cases, the title is displayed immediately above the
content. If the content is a figure or image, the title is displayed below the content.

A block title is defined on a line above the element. The line must begin with a dot (.)
and be followed immediately by the title text with no spaces in between.

Here’s an example of a list with a title:

.TODO list

- Learn the AsciiDoc syntax

- Install AsciiDoc

- Write my document in AsciiDoc

Speaking of block titles, let’s dig into blocks and discover which types of blocks AsciiDoc
supports.

28

Chapter 2. Building blocks in AsciiDoc

AsciiDoc provides a nice set of components for including non-paragraph text—such
as block quotes, source code listings, sidebars and tables—in your document. These
components are referred to as delimited blocks because they are surrounded by
delimiter lines.

2.1. Delimited blocks

You’ve already seen many examples of the listing block (i.e., code block), which is
surrounded by lines with four or more hyphens.

This is an example of a _listing block_.

The content inside is rendered as <pre> text.

Within the boundaries of a delimited block, you can enter any content or blank lines.
The block doesn’t end until the ending delimiter is found. The delimiters around the
block determine the type of block, how the content is processed and rendered and what
elements are used to wrap the content in the output.

Here’s how the block above appears when rendered as HTML:

This is an example of a _listing block_.

The content inside is rendered as <pre> text.

Here’s the HTML that gets generated:

<div class="listingblock">

 <div class="content monospaced">

 <pre>This is an example of a _listing block_.

The content inside is rendered as <pre> text.</pre>

 </div>

</div>

You should notice a few things about how the content is processed:

• the HTML tag <pre> is escaped

• then endlines are preserved

Building blocks in AsciiDoc

29

• the phrase “listing block” is not italicized, despite having underscores around it.

Each type of block is processed according to it’s purpose. Literal blocks don’t receive
the full set of substitutions normally applied to a paragraph. Since a listing block is
typically used for source code, substitutions are not desirable.

The following table identifies the delimited blocks that AsciiDoc provides by default,
their purpose and what substitutions are performed on its content.

Name (Style) Line delimiter Purpose Substitutions

comment //// Private notes that
are not displayed in
the output

None

example ==== Designates
example content
or defines an
admonition block

Normal

literal Output text to be
displayed exactly
as entered

Verbatim

listing, source ---- Source code or
keyboard input to
be displayed as
entered

Verbatim

open -- Anonymous block
that can act as any
other block (except
pass or table)

Varies

pass ++++ Raw text to be
passed through
unprocessed

None

quote, verse ____ A quotation or
verse with optional
attribution

Normal

sidebar **** Aside text rendered
outside the flow of
the document

Normal

Building blocks in AsciiDoc

30

Name (Style) Line delimiter Purpose Substitutions

table |=== Used to display
tabular content or
advanced layouts

Varies

AsciiDoc allows delimited lines to be longer than 4 characters. Don’t
do it. Maintaining long delimiter lines is a colossal waste of time, not
to mention arbitrary and error prone. Use the minimum line length
required to create a delimited block and move on to drafting the
content. The reader will never see the long delimiters anyway since
they are not carried over to the output.

This table shows the substitutions performed by each substitution group referenced in
the previous table.

Group Special
characters

Callouts Quotes AttributesReplacementsMacros Post
replacements

Normal Yes No Yes Yes Yes Yes Yes

Verbatim Yes Yes No No No No No

None No No No No No No No

You can control how blocks are displayed using block metadata.

2.2. Block metadata

Metadata can be assigned to any blocks. There are several types of metadata:

• Title

• Id (i.e., anchor)

• Style (first unnamed block attribute)

• Named block attributes

Here’s an example of a quote block that includes all types of metadata:

.Gettysburg Address

[[gettysburg]]

[quote, Abraham Lincoln, Soldiers' National Cemetery Dedication]

Four score and seven years ago our fathers brought forth

Building blocks in AsciiDoc

31

on this continent a new nation...

Now we are engaged in a great civil war, testing whether

that nation, or any nation so conceived and so dedicated,

can long endure. ...

Here’s the metadata extracted from this block:

Title
Gettysburg Address

Id
gettysburg

Style
quote

Named block attributes

attribution
Abraham Lincoln

citetitle
Dedication of the Soldiers' National Cemetery

A block can have multiple block attribute lines. The attributes will be
aggregated. If there is a name conflict, the last attribute defined wins.

Some metadata is used as supplementary content, such as the title, whereas other
metadata controls how the block is rendered, such as the style. Consult the Delimited
Blocks1 chapter in the AsciiDoc User Guide for a full list of the metadata that is
applicable for each block.

2.3. Masquerading blocks

Some blocks can masquerade as other blocks, a feature which is controlled by the
block style. The block style is the first positional attribute in the block attribute list.

2.3.1. Admonition blocks

For instance, an example block can act as an admonition block:

1 http://asciidoc.org/userguide.html#X104

http://asciidoc.org/userguide.html#X104
http://asciidoc.org/userguide.html#X104
http://asciidoc.org/userguide.html#X104

Building blocks in AsciiDoc

32

[NOTE]

====

This is an example of an admonition block.

Unlike an admonition paragraph, it may contain any AsciiDoc content.

The style can be any one of the admonition labels:

* NOTE

* TIP

* WARNING

* CAUTION

* IMPORTANT

====

2.3.2. Listing and source code blocks

At the start of this tutorial, remember how painful we said it is to insert source code
into a document using a traditional word processor. They just aren’t designed for that
use case. AsciiDoc is!

In fact, inserting source code in an AsciiDoc is incredibly easy. Just shove the raw code
into a listing block.

require 'asciidoctor'

puts Asciidoctor.render_file('sample.adoc', :header_footer => true)

To enable syntax highlighting in the output, set the style on the block to source and
specify the source language in the second attribute position.

[source,ruby]

require 'asciidoctor'

puts Asciidoctor.render_file('sample.adoc', :header_footer => true)

You can even use source code that’s in a separate file. Just use the AsciiDoc include
macro:

Building blocks in AsciiDoc

33

[source,ruby]

include::example.rb[]

To really show how well-suited AsciiDoc is for technical documentation, it also supports
callouts in source code. Code callouts are used to explain lines of source code. The
explanations are specified below the listing and keyed by number. Here’s an example:

[source,ruby]

require 'asciidoctor' <1>

puts Asciidoctor.render_file('sample.adoc', :header_footer => true) <2>

\<1> Imports the library

\<2> Reads, parses and renders the file

Here’s how the callouts appear when rendered:

Example 2.1. Source code with callouts

require 'asciidoctor'

puts Asciidoctor.render_file('sample.adoc', :header_footer => true)

Imports the library
Reads, parses and renders the file

2.3.3. Open blocks

The most versatile block of all is the open block. An open block can act as any other
block, with the exception of pass and table. Here’s an example of an open block acting
as a sidebar:

[sidebar]

.Related information

--

Building blocks in AsciiDoc

34

This is aside text.

It is used to present information related to the main content.

--

2.3.4. Passthrough blocks

The "anything goes" mechanism in AsciiDoc is the passthrough block. As its name
implies, this block passes its contents through directly to the output document. When
you’ve encountered a complex requirement that you can meet using the AsciiDoc
syntax, just put the output you want inside a passthrough block.

++++

<video poster="images/movie-reel.png">

 <source src="videos/writing-zen.webm" type="video/webm">

</video>

++++

Using a passthrough block couples your document to a specific
output format, such as HTML. You can use conditional inclusion
macros2 to declare passthrough markup for each of the backends
you nee to support.

The block style can be used in the absense of block delimiters to promote a paragraph
to a block element.

2.4. Delimiters optional

If the content is contiguous (not interrupted by blank lines), you can forgo the use of
the block delimiters and instead use the block style above a paragraph to repurpose
it as one of the delimited block types.

This format is often used for single-line listings:

[listing]

sudo yum install asciidoc

or single-line quotes:

2 http://asciidoc.org/userguide.html#_conditional_inclusion_macros

http://asciidoc.org/userguide.html#_conditional_inclusion_macros
http://asciidoc.org/userguide.html#_conditional_inclusion_macros
http://asciidoc.org/userguide.html#_conditional_inclusion_macros

Building blocks in AsciiDoc

35

[quote]

Never do today what you can put off 'til tomorrow.

While most blocks are linear, tables give you the ability to layout content horizontally
as well.

2.5. A new perspective on tables

Tables are one of the most refined areas of the AsciiDoc syntax. They are easy to
create, easy to read in raw form and also remarkably sophisticated. I recommend that
you use tables sparingly because they interrupt the conversation with your readers.
When they are the most suitable way to present the information, know that you’ve got
a powerful tool in your hands.

You can think of a table as a delimited block that contains one or more bulleted lists.
The list marker is a vertical bar (|). Each list represents one row in the table and must
share the same number of items (taking into account any column or row spans).

Here’s a simple example of a table with two columns and three rows:

[cols=2]

|===

|Firefox

|Web Browser

|Ruby

|Programming Language

|TorqueBox

|Application Server

|===

The first non-blank line determines the number of columns. Since we are putting each
column on a separate line, we have to be explicit about the number of columns in the
cols block attribute.

We can make the first row of the table the header by setting the header option on
the table.

[cols=2, options="header"]

|===

Building blocks in AsciiDoc

36

|Name

|Group

|Firefox

|Web Browser

|Ruby

|Programming Language

...

|===

We could define the header cells on one line so that the cols attribute is not required.

[options="header"]

|===

|Name |Group

|Firefox

|Web Browser

...

|===

The content of each item (i.e., cell) can span multiple lines, as is the case with other
lists in AsciiDoc. Unlike other lists, the content of each cell may contain blank lines
without the need for a list continuation to hold them together. A new cell begins when
another non-escaped vertical bar (|) is encountered.

[options="header"]

|===

|Name |Group |Description

|Firefox

|Web Browser

|Mozilla Firefox is an open-source web browser.

It's designed for standards compliance,

performance, portability.

|Ruby

|Programming Language

|A programmer's best friend.

...

Building blocks in AsciiDoc

37

|===

You can set the relative widths of each column using column specifiers—a comma-
separated list of relative values defined in the cols block attribute. The number of
entries in the list determines the number of columns:

[cols="2,3,5", options="header"]

|===

|Name |Group |Description

|Firefox

|Web Browser

|Mozilla Firefox is an open-source web browser.

It's designed for standards compliance,

performance and portability.

|Ruby

|Programming Language

|A programmer's best friend.

...

|===

If you want to include blocks or lists inside the contents of a column, you can put an a
(for AsciiDoc) at the end of the column’s relative value.

[cols="2,3,5a", options="header"]

|===

|Name |Group |Description

|Firefox

|Web Browser

|Mozilla Firefox is an open-source web browser.

It's designed for:

* standards compliance,

* performance and

* portability.

|Ruby

|Programming Language

|A programmer's best friend.

...

Building blocks in AsciiDoc

38

|===

Alternatively, you can apply the AsciiDoc style to an individual cell by prefixing the
vertical bar with an a :

a|Mozilla Firefox is an open-source web browser.

It's designed for:

* standards compliance,

* performance and

* portability.

There’s a whole collection of column and cell specifiers you can use to format the
contents of the table, including styling and alignment. Consult the Tables3 chapter of
the AsciiDoc User Guide for a full list.

AsciiDoc tables can also be created directly from CSV data. Just set the format block
attribute to csv and insert CSV data inside the block delimiters, either directly:

[format="csv", options="header"]

|===

Artist,Track,Genre

Baauer,Harlem Shake,Hip Hop

The Lumineers,Ho Hey,Folk Rock

|===

or using an include::[] directive:

[format="csv", options="header"]

|===

include::tracks.csv[]

|===

Asciidoctor 0.1.3 also recognizes shorthand notation for setting CSV and DSV table
formats. The first position of the table block delimiter (i.e., |===) can be replaced by
a data delimiter to set the table format accordingly.

Instead of specifying the csv format using an attribute, you can simply replace the
leading pipe (|) with a comma (,).

3 http://asciidoc.org/userguide.html#_tables

http://asciidoc.org/userguide.html#_tables
http://asciidoc.org/userguide.html#_tables

Building blocks in AsciiDoc

39

,===

a,b,c

,===

In the same way, the dsv format can be specified by replacing the leading pipe (|)
with a colon (:).

:===

a:b:c

:===

That’s a pretty powerful option.

40

Chapter 3. What else can AsciiDoc do?

We’ve covered many of the features of the AsciiDoc syntax, but it still has much
more depth. AsciiDoc is simple enough for a README, yet can scale to meet the
requirements of a publisher.

Here are some of the features that the AsciiDoc syntax supports:

• footnotes

• indexes

• appendix, preface, dedication, partintro

• multi-line attributes

• preprocessor directive (conditional markup)

• mathematical formulas

• musical notation

• diagrams

• block filters

• themes

• custom blocks, macros and output formats

Consult the AsciiDoc User Guide1 to continue exploring the AsciiDoc syntax and
processor.

That’s enough syntax for now. You’ve created your first AsciiDoc document. Now
it’s time to render the document into a presentable format. This will give you a real
appreciation for the power that AsciiDoc puts in your hands.

1 http://asciidoc.org/userguide.html

http://asciidoc.org/userguide.html
http://asciidoc.org/userguide.html

41

Chapter 4. Rendering your document

While AsciiDoc is designed to be readable in raw form, the intended audience for that
format are writers and editors. Readers aren’t going to appreciate the raw text nearly
as much. Aesthetics matter. You’ll want to apply nice typography with font sizes that
adhere to the “golden ratio”, colors, icons and images to give it the respect it deserves.
That’s where the AsciiDoc processor comes in (after you have done the writing).

An AsciiDoc processor parses the document and translates it into a backend format,
such as HTML, ePub, DocBook or PDF. AsciiDoc ships with a set of default templates in
the tin, but you can customize the templates or create your own to get exactly the output
you want. We’ll cover the most common usages of the processor in this document.

Before you can use an AsciiDoc processor, you have to install one.

4.1. Installing AsciiDoc

The original AsciiDoc processor is a Python script and can be run on any system that
has Python 2 installed.1

There’s a modern implementation of AsciiDoc, written in Ruby,
named Asciidoctor. If decide to use Asciidoctor, you’ll still need to
install the Python version for some conversions—such as generating
a PDF—that Asciidoctor doesn’t handle at the time of this writing.

4.1.1. Installing AsciiDoc via a package manager

The quickest way to install AsciiDoc is through the package manager on your system.
Here are the commands for several popular package management systems:

Ubuntu / Debian

$> sudo apt-get install asciidoc

Fedora

$> sudo yum -y install asciidoc

MacOSX

1At the time of writing, the AsciiDoc processor does not work with Python 3.

Rendering your document

42

$> brew install asciidoc

If Python isn’t already installed, it should be installed as a
dependency of the package.

If the install was successful, you should be able to execute the asciidoc and a2x
commands from a command prompt:

$> asciidoc --version

asciidoc 8.6.8

$> a2x --version

a2x 8.6.8

4.1.2. Installing AsciiDoc manually

If you can’t get the AsciiDoc processor using a package manager, you can install it
manually following these steps:

1. Make sure you have Python 2 installed on your system

2. Download the distribution archive2 from the AsciiDoc website.

3. Extract the archive into a directory where you keep your programs

4. Find the asciidoc.py and a2x.py files in the extracted directory

5. Rename these files to asciidoc and a2x , respectively

6. Add the extracted directory to your PATH environment variable

For more details on the manual install, see the AsciiDoc Installation Guide3 .

If the install was successful, you should be able to execute the asciidoc and a2x
commands from a command prompt:

$> asciidoc --version

asciidoc 8.6.8

$> a2x --version

a2x 8.6.8

2 http://sourceforge.net/projects/asciidoc/files/latest/download
3 http://asciidoc.org/INSTALL.html

http://sourceforge.net/projects/asciidoc/files/latest/download
http://asciidoc.org/INSTALL.html
http://sourceforge.net/projects/asciidoc/files/latest/download
http://asciidoc.org/INSTALL.html

Rendering your document

43

Now you’re ready to convert your document!

4.2. Converting a document to HTML 5

AsciiDoc comes with two HTML backends:

xhtml11
Creates an HTML document that adheres to the XHTML 1.1 specification and uses
CSS2 for styling

html5
Create an HTML document that adheres to the HTML 5 specification and uses CSS3
for styling

The default backend in AsciiDoc is xhtml11. If you don’t specify a backend, the
AsciiDoc processor will assume you want to use xhtml11. We want to look forward, so
we’re going to use the html5 backend.

In your command prompt, switch to the directory that contains the document and
execute the following command:

$> asciidoc -b html5 sample.adoc

You won’t see any messages printed to the console. If you type ls (or view the
directory in a file manager), there is a new file named sample.html .

$> ls

sample.adoc sample.html

AsciiDoc derives the name of the output document from the name of the input document
by simply changing the file extension.

The document uses CSS for styling and JavaScript for generating parts of the document
such as the table of contents and footnotes, which it embeds into the document so you
don’t have to worry about managing extra resources.

If you have image references in your document, you still have to move those with the
output document. To have the images embedded into the document as well, pass the
data-uri attribute to the processor:

$> asciidoc -b html5 -a data-uri sample.adoc

Rendering your document

44

If you want the document to include a table of contents, pass the toc attribute to the
processor:

$> asciidoc -b html5 -a data-uri -a toc sample.adoc

If you want to use data-uri and toc by default, you can add them to the header
of the document:

= Document Title

Doc Writer <doc.writer@asciidoc.org>

2012-01-01

:data-uri:

:toc:

Content...

The default stylesheet that comes with AsciiDoc is quite…blue. AsciiDoc ships with two
additional themes, flask and volnitsky. People tend to prefer the flask theme, which you
can enable using the theme attribute:

$> asciidoc -b html5 -a theme=flask sample.adoc

See the Themes4 chapter in the AsciiDoc User Guide to learn how to create your own
theme.

If you’d rather supply your own stylesheet, you can specify the relative path to it using
the stylesheet attribute:

$> asciidoc -b html5 -a stylesheet=mystyles.css sample.adoc

The custom styles will be embedded into the document, as with the default stylesheet.

Using Asciidoctor

Asciidoctor, an implementation of the AsciiDoc processor written in Ruby, is a
drop-in replacement for AsciiDoc in most cases. Asciidoctor provides both a

4 http://asciidoc.org/userguide.html#X99

http://asciidoc.org/userguide.html#X99
http://asciidoc.org/userguide.html#X99

Rendering your document

45

commandline tool and a Ruby API for converting AsciiDoc documents to HTML
5, DocBook 4.5 and custom output formats.

Asciidoctor is published to RubyGems.org5 as a Ruby Gem6 (a packaging
format for Ruby libraries). If you have Ruby and RubyGems on your system, you
can install Asciidoctor using the gem command:

$> gem install asciidoctor

If you are running Fedora 17 or higher, you can install it using yum , which will
also install Ruby if it’s not yet installed on your system:

$> sudo yum install rubygem-asciidoctor

To use Asciidoctor, you simply replace asciidoc with asciidoctor in any
of the commands in this section. For example, to generate an HTML document:

$> asciidoctor sample.adoc

In Asciidoctor, the html5 backend is the default, so there’s no need to specify a
backend explicitly to generate an HTML 5 document.

Asciidoctor also provides a Ruby API, so you can generate an HTML document
directly from a Ruby application:

require 'asciidoctor'

Asciidoctor.render_file('sample.adoc', :in_place => true)

Alternatively, you can capture the HTML output into a variable instead of writing
it to a file:

html = Asciidoctor.render_file('sample.adoc', :header_footer => true)

puts html

To generate DocBook, just specify the backend option:

5 https://rubygems.org/gems/asciidoctor
6 http://docs.rubygems.org/read/chapter/1

https://rubygems.org/gems/asciidoctor
http://docs.rubygems.org/read/chapter/1
https://rubygems.org/gems/asciidoctor
http://docs.rubygems.org/read/chapter/1

Rendering your document

46

Asciidoctor.render_file('sample.adoc', :in_place => true,

 :backend => 'docbook')

You can learn more about Asciidoctor and how it differs from the AsciiDoc
processor on the Asciidoctor project page7 .

One of the strengths of AsciiDoc is that it can output to a variety of formats, not just
HTML.

4.3. Converting a document to DocBook

Despite the fact that writing in DocBook is inhumane, it’s useful as a portable document
format. Since AsciiDoc was designed with DocBook output in mind, the conversion is
very good. There’s a corresponding DocBook element for each markup in the AsciiDoc
syntax.

AsciiDoc provides a DocBook 4.5 backend out of the box. To convert the document to
this format, call the processor with the backend flag set to docbook:

$> asciidoc -b docbook sample.adoc

A new XML document, named sample.xml , will now be present in the current
directory:

$> ls

sample.adoc sample.html sample.xml

If you’re on Linux, you can view the DocBook file using Yelp:

$> yelp sample.xml

DocBook is only an intermediary format in the AsciiDoc toolchain. You’ll either feed it
into a system that processes DocBook (like publican8), or you can convert it to PDF
using the AsciiDoc processor.

7 http://asciidoctor.org/
8 https://fedorahosted.org/publican

http://asciidoctor.org/
https://fedorahosted.org/publican
http://asciidoctor.org/
https://fedorahosted.org/publican

Rendering your document

47

4.4. Converting the document to PDF

PDF is a nice format for presenting a final version of a document. For legacy reasons,
the conversion to PDF is handled by a separate program in the AsciiDoc distribution,
a2x .

a2x can accept a DocBook file as input and produce a PDF:

$> a2x -f pdf --fop sample.xml

A new PDF document, named sample.pdf , will now be present in the current
directory:

$> ls

sample.adoc sample.html sample.pdf sample.xml

You can view the PDF using any PDF viewer. Go ahead, take a look!

Yes, you just created that PDF. It was that easy!

Rather than converting from AsciiDoc to DocBook and then from DocBook to PDF in
two steps, a2x can go directly from AsciiDoc to PDF in a single call:

$> a2x -f pdf --fop sample.adoc

AsciiDoc can also be used for creating HTML-based presentations. This use further
demonstrates the reusability of the AsciiDoc syntax.

4.5. Producing HTML-based presentations

The conversion to HTML-based slides is handled by a custom backend. The backends
usually requires that you adhere to a set of conventions to define a slide and its content.
But there’s nothing in that content that restricts the document from being converted to
a regular HTML page or PDF.

The first backend created was the one for deck.js9 . You have to put the backend files
where AsciiDoc can find them. Then you simply run the processor on your AsciiDoc
document with the deckjs backend enabled:

9 http://imakewebthings.com/deck.js

http://imakewebthings.com/deck.js
http://imakewebthings.com/deck.js

Rendering your document

48

$> asciidoc -b deckjs slides.adoc

Asciidoctor has backends for generating deck.js, dzslides and reveal.js presentations
as well. Backends for other presentation frameworks are in the works.

4.6. Output galore

There’s really no end to the customization you can do to the output that the AsciiDoc
processor(s) generate. We’ve just scratched the surface here. Keep in mind that this
magazine was produced from AsciiDoc, so never underestimate how far you can make
the output stretch.

If you want to start tweaking the output that is generated, refer to instructions in the
AsciiDoc User Guide10 .

4.7. Where else is AsciiDoc rendered?

The easiest way to experiment with AsciiDoc is online. AsciiDoc document in a GitHub
repository or a gist11 is automatically rendered as HTML and displayed in the web
interface.

If you have a project on GitHub, you can write the README or any other documentation
in AsciiDoc and the GitHub interface will show the HTML output for visitors to view.

Gists, in particular, are a great way to experiment with AsciiDoc. Just create a new gist,
name the file with the extension .adoc and enter AsciiDoc markup. You can save the
document as public or secret. If you want to try AsciiDoc without installing any software,
a gist is a great way to get started.

While there’s plenty more of the AsciiDoc syntax and toolchain to explore, you know
more than enough about it to write a range of documentation, from a simple README
to a comprehensive user guide.

10 http://asciidoc.org/userguide.html
11 http://gist.github.com

http://asciidoc.org/userguide.html
http://gist.github.com
http://asciidoc.org/userguide.html
http://gist.github.com

49

Chapter 5. Wrap-up

Writing in AsciiDoc should be no more complex than writing an e-mail. All you need to
compose a document in AsciiDoc is open a text editor and type regular paragraphs.
Only when you need additional semantics or formatting do you need to introduce
markup. Let your instinct guide you when you need to remember what punctuation to
use. The AsciiDoc syntax is based on time-tested plain-text conventions from the last
several decades of computing. Hopefully you agree that the markup does not detract
from the readability of the text in raw form, as that’s a key goal of lightweight markup
languages like AsciiDoc.

As humans, communication is what connects us through the ages and allows us to pass
on knowledge. AsciiDoc enables you to focus on communicating rather than distracting
you with other stuff that just gets in the way. Copy the text of an e-mail into a document
and see how easy it to repurpose it as documentation. Almost immediately, you’ll find
your writing zen and enjoy the rewarding experience of producing.

If you get stuck working with the syntax, be sure to browse the Gotchas1 section of the
AsciiDoc User Guide and the AsciiDoc FAQ2 to find answers. When all else fails, send
your question to the AsciiDoc discussion list3 .

1 http://asciidoc.org/userguide.html#_gotchas
2 http://asciidoc.org/faq.html
3 http://groups.google.com/group/asciidoc

http://asciidoc.org/userguide.html#_gotchas
http://asciidoc.org/faq.html
http://groups.google.com/group/asciidoc
http://asciidoc.org/userguide.html#_gotchas
http://asciidoc.org/faq.html
http://groups.google.com/group/asciidoc

50

Glossary

admonition paragraph a callout paragraph that has a label or icon indicating its
priority

admonition block a callout block containing complex content that has a label
or icon indicating its priority

backend a set of templates for converting AsciiDoc source to
different output format

cross reference a link from one location in the document to another location
marked by an anchor

list continuation a plus sign (+) on a line by itself that connects adjacent
lines of text to a list item

quoted text text which is enclosed in special punctuation to give it
emphasis or special meaning

	AsciiDoc Writer’s Guide
	Table of Contents
	
	Chapter 1. Writing in AsciiDoc
	1.1. “It’s just text, mate.”
	1.2. Content is king!
	1.3. Admonitions
	1.4. Mild punctuation, strong impact
	1.4.1. Quoted text
	1.4.2. Preventing substitution
	1.4.3. Replacements

	1.5. Lists, lists, lists
	1.5.1. Lists of things
	1.5.2. Ordering the things
	1.5.3. Titling a list
	1.5.4. Labeled lists
	1.5.5. Hybrid lists
	1.5.6. Complex list content
	1.5.7. Dividing lists

	1.6. Links and images
	1.6.1. External links
	1.6.2. Target window and role attributes for links
	1.6.3. Links to relative files
	1.6.4. Internal cross references
	1.6.5. Images

	1.7. Titles, titles, titles
	1.7.1. Document title
	The document header

	1.7.2. Document attributes
	1.7.3. Section titles
	Preamble

	1.7.4. Block titles

	Chapter 2. Building blocks in AsciiDoc
	2.1. Delimited blocks
	2.2. Block metadata
	2.3. Masquerading blocks
	2.3.1. Admonition blocks
	2.3.2. Listing and source code blocks
	2.3.3. Open blocks
	2.3.4. Passthrough blocks

	2.4. Delimiters optional
	2.5. A new perspective on tables

	Chapter 3. What else can AsciiDoc do?
	Chapter 4. Rendering your document
	4.1. Installing AsciiDoc
	4.1.1. Installing AsciiDoc via a package manager
	4.1.2. Installing AsciiDoc manually

	4.2. Converting a document to HTML 5
	4.3. Converting a document to DocBook
	4.4. Converting the document to PDF
	4.5. Producing HTML-based presentations
	4.6. Output galore
	4.7. Where else is AsciiDoc rendered?

	Chapter 5. Wrap-up
	Glossary

